
Technical Design
Document

Table of Contents
(Click anywhere on a line to skip to its section.)

Software Versions…………………………….……………..….……
Naming Conventions & Folder Structure…………
Level Pipeline Guide……………………………………………..
Character Pipeline Guid………………………………………
Animation Pipeline Guide………………………..…….…..
Sound Pipeline Guide…………………………..………………
Polycounts & Texture Limits………………………………
Import/Export Rules……………………………………..….…
Narrative Implementation……………………..………….
Project-Wide Functions……………………………….………
Procedural Systems………………………………..…………….
Combat……………………………………………..………….……………
Weapons………………………………………………..……………….…
Gadgets………………………………………………………………..……
Aster(Player Character)………………………………………
Health…………………………………………………………………………
Shops & Currency……………………………………..……………
Input……………………………………………………………………………
Saving & Loading………………………………………..…………
Enemies………………………………………………………………..……
Bosses…………………………………………………………………………
Graphics Options……………………………………………………

3
4

20
30
40
42
45
47
50
51
52
56
57
61
62
65
66
68
69
71
74
75

Software Versions

Whenever possible, software versions on home computers should
match those used on school computers. Never update assets to
work with software versions which do not work on the computers
in Montgomery hall!

Software Version
Visual Studio 2022

Unreal Engine 5.1.x

Substance Painter 8.2.0

Substance Designer 12.3.0

Autodesk Maya 2020 2020.4

Photoshop 24.0

Reaper Info Pending

Blender 3.2

Zbrush 2022.0.5

Naming Conventions & Folder Structure
Most of this information is taken from UE's Recommended Asset

Naming Conventions with some small modifications.*

This document is subject to change until production starts on
assets, unless there is a major problem or there was an

overlooked asset type.

Naming Conventions
Most file names will follow this name structure:

[Type Prefix]_[Asset Name]_[Descriptor/Variant]

Asset names should be descriptive and concise!

2

Materials

Asset Types
Click a button to skip to a specific type page.

Use Ctrl + F to search for a specific term.

Meshes

Blueprints

Textures

Particles

Misc.

https://docs.unrealengine.com/4.27/en-US/ProductionPipelines/AssetNaming/
https://docs.unrealengine.com/4.27/en-US/ProductionPipelines/AssetNaming/

Meshes

Static Mesh SM_[Asset Name]

Skeletal Mesh SKM_[Asset Name]

Physics Asset PHYS_[Asset Name]

Control Rig CR_[Asset Name]

Animation, Descriptor ANIM_[Asset Name]_[Descriptor]

Asset Type Naming Convention

Materials

Master Material M_[Generic Name]

Material Instance MI_[Specific Name or Asset Name]

Post Process Material PPM_[Name]

Material Function MF_[Function Name]

Asset Type Naming Convention

Particles

Niagara Emitter NE_

Niagara System NS_

Niagara Function NF_

Asset Type Naming Convention

Textures

T_[Asset Name]_[Descriptor/Variant]_[Type Suffix]

Diffuse, Alpha _D

Normal _N

Occlusion, Roughness, Metallic
Packed

_ORM

Emissive _E

Packed Masks _M

UI Elements _UI

Asset Type Suffix

Packed Masks

Make sure to only export the required textures.*

Red Channel:
Displacement

Green Channel:
Subsurface Scattering Mask

Blue Channel:
Specular

Blueprints

Blueprint BP_

Animation Blueprint ABP_[Asset Name]

Blueprint Interface BPI_

Widget Blueprint WBP_

Structure ST_

Enumerator E_

Curve Data Asset C_

Behavior Tree BT_

Blackboard BB_

Blueprint Function Library BFL_

Blueprint Macro Library BML_

Asset Type Naming Convention

Misc.

Sequence SEQ_

Level L_

Asset Type Naming Convention

Handling Duplicate Names

This is what the Descriptor/Variant part of the file name is for. If
you are making something like leaves and you make multiple
kinds, give them a variant name or number.

Ex.
T_Leaf_Oak_D
T_Leaf_1_D
T_Leaf_Oak1_D

Duplicate Meshes

There should be no duplicate meshes, instead create separate
actors that use the same mesh and assign the materials in the
actor. These are placed in the /Blueprints/Actors folder.

Modules

In lieu of a typical “geometry, texture, material, etc.” folder
structure under Content, assets are divided into modules. Modules
are designed as largely freestanding sections of the game. The
purpose of modules is to help avoid bloated asset folders in our
large team project, and reduce the number of people accessing
one folder at a given time. Modules are stored in the Content
folder, or as plugins. While they will not adhere to our naming
conventions or folder structure, marketplace content and
externally developed plugins are still considered Modules.

A module might be a level, a collection of enemy blueprints, a
collection of weapon blueprints.

Modules may depend upon other modules or have modules who
depend on them.

A module is “checked out” by a scrum team, and can remain
checked out for as long as they desire. A module “checked out” by
a scrum team cannot be edited by another team without their
permission.

Modules, and information on them are stored in the Module
Spreadsheet, which lists all modules, their dependencies, and
which team has them checked out.

Continued on next page.

Modules Cont.

Modules should strive to be as freestanding as possible without
inhibiting workflow. In an ideal world, a module and all its assets
should work without any other modules, except those explicitly
stated as dependencies. However, duplicate assets should also be
avoided. In those cases where an asset from another module is
needed, consider moving the asset to the _SharedAssets module
with the permission of the module’s current owner or listing the
module containing the asset as a dependency.

The _Core module contains base blueprint classes needed
throughout the project, as well as the player character, and base
materials.

The _SharedAssets module contains assets expected to be used in
multiple modules. The _SharedAssets module is an exception to
module checkout rules and can be added to by any scrum team at
any time.

Other modules include:
- AI
- Weapons

Finding assets among modules (or the large folders created by a
module-less system) can be hard. Thankfully, Unreal Engine’s
search and filter tools are quick and powerful. Teach yourself to
find assets by default by searching for them rather than trying to
navigate through folders. Start by filtering for the asset type (or
start your search with the appropriate prefix), then search likely
terms if you don’t know the asset name.

- Biome 1
- Biome 2

- Biome 3
- Badlands

- Procedural
- Mining Town

Folder Structure In Module

Each module contains:

Base Folders
ModuleName
├───Assets
├───Blueprints
├───Cinematics
├───Maps
└───Sounds

Assets
All visual assets will be placed into an ‘Assets’ folder with
sub-folders to separate by type and asset.

Assets
├───Characters
├───Environments
├───Foliage
├───Textures
├───UI

Folder Structure In Module Cont.

Characters
Holds all character assets separated into folders by type and
subfolders for each character.

Characters
├───Player
│ └───Fox
│ ├───Animations*
│ │ ANIM_Fox_Jump
│ ├───Effects
│ ├───Materials
│ │ M_Fox
│ ├───Meshes
│ │ ABP_Fox
│ │ PHYS_Fox
│ │ SKEL_Fox
│ │ SK_Fox
│ └───Textures
│ T_Fox_D
│ T_Fox_M
│ T_Fox_N
│ T_Fox_ORM
├───Enemy
└───NPC

Note*
Animation Blueprints go with
the corresponding mesh

Folder Structure In Module Cont.

Environments
Holds environment assets separated by environment with
subfolders for Props and Terrain. Global holds universal
environment assets.

Environments
├───Town
│ ├───Effects
│ │ ├───Emitters
│ │ ├───Functions
│ │ ├───Materials
│ │ ├───Meshes
│ │ ├───Textures
│ │ └───Systems
│ ├───Props
│ │ ├───Materials
│ │ ├───Meshes
│ │ └───Textures
│ ├───Terrains
│ │ ├───Materials
│ │ ├───Meshes
│ │ └───Textures
│ │ ├───Meshes
│ │ └───Textures
│ └───Foliage
├───Swamp
└───Global

Folder Structure In Module Cont.

Effects
Holds all effects for the area.

Props
Holds anything that isn’t repeated and/or is complex.

Terrain*
Holds anything that is repeated and modular pieces.

Foliage*
Holds all foliage assets separated into materials, meshes, and
textures folders.
Foliage
├───Materials
│ MI_Leaf
│ M_Foliage
├───Meshes
│ SM_Leaf
└───Textures
 T_Leaf_D
 T_Leaf_M
 T_Leaf_N
 T_Leaf_ORM

Textures
Holds all miscellaneous textures that are used across the
project, ie default normals, textures, alphas, noise.

Note*
Foliage and Terrain do not
separate each asset based
on name

Folder Structure In Module Cont.

UI
Holds all UI visual assets. Does not hold widget blueprints.
UI
├───Materials
└───Textures

Blueprints
Holds all blueprints (excluding animation blueprints).
Blueprints are separated by purpose.
Blueprints
├─── Category 1
├─── Category 2
├─── etc.

Cinematics
Holds all sequences

Maps
All maps for the module

Sounds
All sounds for the module
Sounds
├─── SFX
├─── Music

Asset Storage

Assets will be stored in Perforce under the AssetStorage folder.
Within the AssetStorage folder will be a folder for each module,
and the folder structure within that module will replicate that of
the module, with some changes.

Base Folders
ModuleName
├───Assets
└───Sounds

Assets
All visual assets will be placed into an ‘Assets’ folder with
sub-folders to separate by type and asset.
Assets
├───Characters
├───Environments
├───Textures
├───UI

Asset Storage Cont.

Characters
Holds all character assets separated into folders by type and
subfolders for each character.
Characters
├───Player
│ └───Fox
│ ├───Animations
│ │ ANIM_Fox_Jump.fbx
│ ├───Meshes
│ │ Fox.ztl
│ │ Fox.ma
│ │ Fox.mb
│ ├───Substance
│ │ Fox.spp
│ │ Fox.sbs
│ │
│ └───Textures
│ T_Fox_D
│ T_Fox_M
│ T_Fox_N
│ T_Fox_ORM
├───Enemy
└───NPC

Textures
Holds all miscellaneous textures that are used across the
project, ie default normals, textures, alphas, noise.

Asset Storage Cont.

UI
Holds all UI visual assets.
└───Textures

Environments
Holds environment assets separated by environment with
subfolders for Props and Terrain.
Environments
├───Town
│ ├───Effects
│ │ ├───Meshes
│ │ ├───Textures
│ ├───Props
│ ├───Meshes
│ │ Bench.ma
│ │ Bench.fbx
│ ├───Substance
│ │ Bench.spp
│ │ Library.sbs
│ │
├───Swamp
└───Global

Collections

https://docs.unrealengine.com/5.1/en-US/filters-and-collections-i
n-unreal-engine/

Collections are like pallets of assets which can be used to quickly
access resources important to a task. A single asset can be in
multiple collections! We will have at minimum a collection for each
level, as well as one for effects assets and one for UI assets.

All assets added to the project should belong to at least one
collection, and assets should be added to appropriate collections
at import time.

Note that filtering by asset type will make using collections as
pallets much easier!

https://docs.unrealengine.com/5.1/en-US/filters-and-collections-in-unreal-engine/
https://docs.unrealengine.com/5.1/en-US/filters-and-collections-in-unreal-engine/

Level Pipeline Guide

Link To Miro Board

Approval Processes

During approval steps, all listed persons are given the chance to
accept or reject the work, after discussing it with the person who
performed the work, and the other approvers. If work is accepted,
proceed to the next pipeline step. If it is rejected, the approvers
identify how far the character needs to move backwards in the
pipeline for revisions.

Level Concept

1) Level Idea
There is a proposed concept that needs supporting visuals
before it can be implemented in the game. Teams must
brainstorm and agree on a concept to be developed.

2) Moodboard
A moodboard is created to establish the general atmosphere
desired for a level and to establish visual references to be
used during level conception and creation.

3) Thumbnails
Based on the created moodboard, thumbnails with value
comps should be sketched proposing a variety of different
compositions involving changes in lighting, prop placement,
architecture, particles, etc.
a) Thumbnail Approval

Mae will approve a thumbnail to be developed further.

https://miro.com/welcomeonboard/UGRRcjFaMzNTa0hGUnk3b21Ib0FOTzV5N1IwellWcXEzaGlYOHlwOG00NWtUNU1NaEJhNUxKVHBJM01BazV6dXwzNDU4NzY0NTQwNzM0NDAxMDcwfDI=?share_link_id=331430337163

Level Concept Cont.

4) Multiple Camera Angle Sketches
Based on the approved thumbnail, multiple compositions
depicting various camera angles of the environment are
developed.
a) Multiple Camera Angle Sketches Approval

Mae will approve a composition that best captures the
level’s desired design. The compositions that are not
chosen will still be delivered to the environment team to
serve as supporting alternative views of the
environment.

5) Final Render
The approved composition is rendered in color and the
lighting and details are polished.
a) Final Render Approval

Mae, with Nat and Jacob’s input, as well as Coral and
Matt, will approve the composition to be delivered to the
environment team alongside the alternative camera
angles from step 4.

6) Particle Mood Board
A moodboard is created to establish visual references to be
used during particle conception and creation.
a) Particle Mood Board Approval

Mae, with Kano’s input, will approve the moodboard to
be delivered to the particle team.

Level Creation

1) LDDs (Town/Badlands, Mines, Nests, Blood Pits)
Overview of all aspects pertaining to the Level.
Each LDD features level specific hazards, interactables, and
obstacles. However all LDDs share similar room types. These room
types will be closely worked on throughout the Top-Down phase
(2) as each will be vital for capturing the designed level’s flow,
theme, and experience. The LDDs will be the key reference for the
designers to use as it explains the specific levels goals and design
specifics, narratively and gameplay wise.

a) Approval (by Phil/Eric)
Phil and Eric will review and approve each level's Design
Document along with input from the document's creator.

2) Level Design Drawings (Top Down)
Regarding the LDDs; drawings will be of all individual level room
types: Close Quarters, Hybrid, Long Distance, Arena, and Treasure
Rooms along with focus on the specific flow per level we want
experienced. Each top down will follow a specific detailed
illustrated kit that is in each LDDs Environment section in order to
correctly and cohesively translate the design into the Rapid
Prototyping phase (3) and the Blockout phase (4) . All finalized
sketches will be refined in either illustrator or miro and then
added to a folder in dropbox.

Specified naming conventions for the organization of these
top downs are the following:
XX represents the files number ie. 01, 02, 34)
LevelName_Roomtype_XX.png

a) Approval (by Phil/Eric)
Phil and Eric will review and approve each level's top-down
collection along with input from the illustrator’s creator.

Level Creation Cont.

3) Rapid Prototyping (Primitives)
For scale, proportion, player movement, and angles, the rapid
prototyping is the first step of the IN ENGINE build. Using the
primitive shapes along with the UE5 Brushes the levels will be
primitively blocked in order to capture a closer resemblance to each
top down drawing. Each level's room will be its own separate level,
later used in the main levels map through the procedural build system.

The following naming convention is used for a specific level’s rooms:
LevelAbbreviation_RoomType_LVL

The level abbreviations for each level are as followed:
MNS = The Mines
NST = The Nests
BLP = Blood Pits

The following naming convention is used for a specific level in its
entirety:
LVL_LevelName

a) Playtest Loop (by a Level Designer)
Initial test for space, flow, and angles. This will force continuous
iterations on the level and allow for more practical fixes prior to a final
blockout. Using perforce all changes MUST be documented in the
changelogs. Screen captures are heavily recommended in order for
process documentation and changelog history when it comes to
changes, however they are MANDATORY for actual level tests.

Any screen recordings whether it is a test or changelog will share the
following naming conventions:
RP_LevelAbbreviation_Test_Roomtype.mp4
RP_LevelAbbreviation_Change_Roomtype_.mp4

All recordings will be placed into a designated folder inside of dropbox
or google drive inside of a folder labeled Rapid Prototyping then into a
second folder under either Test or Change

Level Creation Cont.

4) Blockout
a) Playtest Loop (by a Level Designer)
Base testing loop for all things pertaining to gameplay; enemies,
angles, spacing, movement, interactions, hazards, and completion.
Everything, besides art, will be placed and tested thoroughly before
going to the next phase. Using perforce all changes MUST be
documented in the changelogs. Screen captures are heavily
recommended in order for process documentation and changelog
history when it comes to changes, however they are MANDATORY for
actual level tests.

Any screen recordings whether it is a test or changelog will share the
following naming conventions:
BO_LevelAbbreviation_Test_Roomtype.mp4
BO_LevelAbbreviation_Change_Roomtype_.mp4

All recordings will be placed into a designated folder inside of dropbox
or google drive inside of a folder labeled Blockout then into a second
folder under either Test or Change

b) Approval (by Phil/Eric + Matt & Coral)
Phil and Eric will review and approve each level's Blockout along with
input from the designs creator.

5) Design Blueprints for Level
This is the base design for all things regarding the levels interactions
as well as completion. Hazards, obstacles, sequences, and spawns. The
design will be documented prior to creation in engine. The
documentation will be inside of each LDD under the Level Blueprints
section.

Level Creation Cont.

6) Create Blueprints
This is the creation of the designed BPs regarding the level.
Testing is beneficial during creation however, most in level
testing will be done during the (4) Blockout phase.

Level BPs in regards to the specific levels LDD will be broken
into 3 categories. Hazard, Intractable, obstacle. The naming
conventions are as followed:
LevelAbbreviation_BPType_BP
Any level BP that is not in the 3 above categories will be
named:
LevelAbbreviation_RoomType_BP

a) Blueprint Approval (by Phil/Eric)
Phil and Eric will review and approve each level blueprint
along with input from the blueprint’s creator.

Asset List Development

1) Create Particle List
A list will be compiled of all needed particle effects to satisfy
the narrative and visual needs of the level. These should be
based on the needs of interactivity within the level.

2) Sound Particle List
a) Particle List Approval

3) Create Prop List
Referencing the concept art, a list will be made of all
individual props needed for the level

4) Prop Sound List
5) Prop Concept Art (for narrative-driving props)

a) Prop List Approval
6) Create Module List

Referencing the concept art, a list will be made of all modular
assets needed for the level

7) Ambient Sounds List
8) Module Concept Sketches

a) Concept Sketch Approval (w/ Matt & Coral)
9) Create Material List

All the needed materials for the level will be considered based
on real life factors and player needs.
a) Material List Approval

10) Create Material Assets
Material Assets, including decals and terrain, will be created
in designer and imported into unreal.
a) Material Asset Approval

11) Implement Material Assets
Material assets will be placed, painted, and otherwise placed
within the level.

Asset Creation

1) Create Particle Assets
Particle assets being materials, textures, and necessary
meshes for Niagara Systems.

2) Niagara
Incorporate particle assets into Niagara Systems.
a) Particle Asset Approval

3) Particle SFX
4) Prop Modeling

Referencing the concept art, the environment team will
choose props from the created list to model for the level. No
UV’s yet.
a) Prop Model Approval

5) Prop Texturing
Props should be textured and incorporated into materials

within the engine. Approvals will not happen within texturing
programs, as materials can look different in-engine.

a) Prop Texture Approval
6) Module Whitebox

The basic shapes of modular assets should be assembled to
scale with the same pivot the final version will use.
a) Module Whitebox Approval

7) Module Modeling
Referencing the concept art, the environment team will
choose modular assets from the created list to model for the
level. No UV’s yet.
a) Module Model Approval

8) Module Texturing
UV’s will be created, the modular asset will be textured and
placed within the engine for review.
a) Module Texture Approval

Sound Creation

1) Environment SFX List
a) Off to Sound Pipeline

2) List of Needed Tracks
a) Off to Sound Pipeline

Bring in Art, Iterate

1) Lighting Block
Serious pass for lighting. Pretend its final. No builds will be required
with Lumen, however time and consideration should go into player
pathing and wide cutscene shots.

2) Reimport Whitebox Modules with Final Art
All final assets that have been altered during iterations will be
imported and fully integrated in the engine.

3) Lighting Refinement
After textures are in the engine, lighting needs may change slightly.
This lighting pass ensures all changes are accounted for.

4) Texture Iteration
Lighting may change texture needs, and textures may not flow
together at this stage. This pass is intended to fix those problems.

5) Set Dressing
Fleshing out the scene using premade assets to make the world more
believable.
a) Art and Lighting Iteration Passes

Playtesting and set dressing will alter the needs for lighting. An
iterative pass will happen as final adjustments are being made to
the level.

b) Playtest
Level Designers will test and iterate the final collective of art and
design, along with gaining input from the artists.

6) Add Final Art to Blueprints
Any art associated with BP assets will be imported and implemented.

7) Sound Pipeline
8) Final Sounds

Final

1) Final Level Approval
a) Final Level Approval is performed by the Product

Owners (Coral & Matt), design leads (Eric and Phil),
and environment leads (Jacob and Nat).
Gameplay, lighting, art assets, and all other aspects
of the level should be considered.

2) Finished Level

Character Pipeline Guide

Link To Miro Board

Approval Processes

During approval steps, all listed persons are given the chance to
accept or reject the work, after discussing it with the person who
performed the work, and the other approvers. If work is accepted,
proceed to the next pipeline step. If it is rejected, the approvers
identify how far the character needs to move backwards in the
pipeline for revisions.

Character Concept

1. Idea for Character
2. Silhouette Work
3. Develop detailed proposals
4. Develop multiple variations
5. Select and approve final design
6. Model sheet
7. Approval of final model sheet

https://miro.com/welcomeonboard/MU92ZXFrS2VUN05sYzVqWmFodVRyWUUzSjhtQXZRSndrNFJNbU9YcE9IeFBKaVJ3R2hFNkpKN0c4WDAydEdtc3wzNDU4NzY0NTQwNzM0NDAxMDcwfDI=?share_link_id=102425978497

Character Sculpt

7) Blockout
The blockout stage must have all primary and secondary forms
complete. The general form and proportions of the character must
be visible at this stage. The character should also be placed in
proper scale and have organized named subtools. The file should
also have proper naming conventions. Artists should also be
saving multiple iterations and backups.

File Naming Convention:
BTB_CHAR_CharacterName_Blockout_LastnameFirstname_Iter
ation
Example: BTB_CHAR_Aster_Blockout_ArtersJohn_9.ztl

a) Approval (by Shannon/John)

8) Final Sculpt
At this stage, all sculpting must be complete. The sculpt must
closely match the concept art and have hair cards (if there are
any) placed. All surface detail must be done, and there must be
multiple subdivisions. All subtools must be named and organized
into folders. The model must be ready for topology. Must export
as obj.

File Naming Convention for ZTool: BTB_CHAR_Character
nameFinal_Sculpt_LastnameFirstname
Example: BTB_CHAR_Sage_FinalSculpt_McConnellShannon.ztl

File Naming Convention for Export: BTB_Character
name_Lastname
Example: BTB_Sage_McConnell.obj

a) Approval (by Shannon/John + Matt & Coral)

Character Topology & UV

9) Topology
At this point the model should be retopologized to the proper poly
count limit (60-80K for hero characters, 30K for everything else)
though they should be as low as possible while keeping the shape.
The model should also have good edge flow and have edge loops
where it will deform. The topology must also be clean with no
non-manifold geometry and no Ngons. Absolute limits are 150K
for hero characters and 50K for non-hero. This file will be saved in
Maya Binary and have backups and iterations.

Naming Convention:
BTB_CHAR_CharacterName_Topology_LastnameFirstname_Iter
ation
Example: BTB_CHAR_Aster_Topology_ArtersJohn_4.mb

a) Approval (by Shannon/John)

General
Hands

Feet Faces
Biped Q-Peds

Q-Peds 2

Extra
Tools

Hands 2 Biped 2

Topology Guides

https://topologyguides.com/
https://sketchfab.com/3d-models/how-to-hand-retopology-for-animation-296d60a657444d64a699b7e323781fbc
https://sketchfab.com/3d-models/foot-topology-cgcookie-style-cc0-c22570db73fa4593b3ddf66f3dad367c
https://sketchfab.com/3d-models/how-to-facial-retopology-for-animation-v2-73e67603b05448bdad5aae1f63b4b4d8
https://sketchfab.com/3d-models/biped-male-topology-study-8695481319684cd48fee33a30b9a197f
https://sketchfab.com/3d-models/rhinoceros-base-mesh-4562cd33160c44a288c0d0ff5851ee1e
https://cgcookie.com/projects/husky-puppy-topology
https://blendermarket.com/products/retopoflow
https://blendermarket.com/products/retopoflow
https://sketchfab.com/3d-models/topology-demo-hand-6ea21f8f91b04144b43aa4b606339de3
https://polycount.com/discussion/211926/retopology-tools

Character Topology & UV Cont.

9) Topology Cont.
In general for animation, it is faster to model a low poly character with clean
topology first before sculpting to higher subdivisions, than to do retopology
afterwards with a messy high-poly model. That means box modeling, extruding,
and keeping an understanding of basic shapes. See the references for examples.

Given only a high poly model, the same rules apply in reverse. Everything should
be broken down into basic shapes, and in general everything is either a Cylinder,
or a cube Sphere, to maintain all quad topology.

Legs, arms, torso, fingers, are all cylinders, a human type head is spherical. The
main problem areas for topology are the intersections of cylinders. The circular
edge resolution of a cylinder should be in multiples of two or four. Depending on
the details needed, a round cylinder will have anywhere from 8 to 64 edges
lengthwise.

As we are using a game engine, we have to use more edge loops for any sharp
edge details. Things like the tips of claws, teeth, tentacles, etc, that end in a sharp
point, should end in a quad cap, not a single vertex, depending on the size and
shape of the detail.

Try to imagine where the joints will bend when placing edge loops, circular edge
loops should be as close to flat as possible along their normal axis, no wavy circles.
Add more edge loops at bend locations, elbows, knees, finger joints, neck, mouth,
hips, etc, and be consistent with the number of loops added, between 2 - 8 extra
loops.

Once the basic shape retopology is in place, adjust edges to fit the model details
as close as possible while keeping quads regularly spaced.

Draw a band of 8 quad strips around the start of a cylinder, like a Shoulder,
extrude all the way to the Wrist, then add more edge loops, as few as possible to
maintain the shape. For faces, draw the edge loops around key areas first before
connecting the rest, eyes, lips, nose, horns, teeth, tongue, ears, etc, all of these are
specific features with their own shape and deformation. For curved shapes, try to
keep the edge loops aligned with the direction of the curve, not stretched.

Use the smoothing tool as much as possible without losing details in key areas, if
your edge flow is not clean or edges are too dense, you need to smooth it, or
remove edge loops. This is harder with more dense topology, so keep it simple.

Character Topology & UV Cont.

10) UV
The UVs must be done on the low-poly model. They can be done in
either Maya or Unreal, but they must be clean and make sense.
They also must be placed in such a way on the UV tile that makes
sense relative to the resolution they’ll need. For hero characters,
aim for 2 texture sets and for non-hero characters aim for 1
texture set. Absolute limits are 4 texture sets for hero and 2
texture sets for non-hero. Also at this point there should be a
Maya file set up for the low-poly model with all of the parts
properly named for baking. Must export as fbx.

Naming Convention for Maya File:
BTB_CHAR_CharacterName_LowPoly_LastnameFirstname
Example: BTB_CHAR_Sage_LowPoly_McConnellShannon

Naming Convention for Export: SM_Character name
Example: SM_Sage.fbx

a) Approval (by Shannon/John)

Character Texturing
11) Baking

The high poly model must bake onto the low poly model in Substance
Painter with no visible artifacts. Everything must be baked at 4K. The
Substance Painter file must also be set up in DirectX and be prepared to
export into Unreal with packed textures. The file will also need to have
backups and iterations.

Naming Convention for Substance File: BTB_CHAR_Character
nameTexture_LastnameFirstname_Iteration
Example: BTB_CHAR_Aster_Texture_ArtersJohn_5.spp

a) Approval (by Shannon/John)

12) Texturing
Textures are done to the level of detail desired and match the style
demonstrated in the art bible. They must also match the given color pallets.
All layers in Substance Painter must be named and organized in folders.
Textures must be put in Unreal to get the best idea of what they will look like
in game before approval. Textures must be exported into a folder. Export
textures as targa files.

There should be three textures per material slot:
BaseColor
Normal
Packed
With packed containing:
G Channel: Roughness
B Channel: Metallic

File folder name: BTB_CHAR_Character name_Textures
Example: BTB_CHAR_Sage_BaseColor

File naming convention:
BTB_CHAR_CharacterName_MaterialSlotName_TextureType
Example: BTB_CHAR_Sage_BaseColor.tga

a) Approval (by Shannon/John + Matt & Coral)
b) Materials must be set up in Unreal to the standards set by the

technical director.

Rigging & Animation

13) Joint Setup
Joints are setup in Maya, complexity will depend on
character/creature type. Unreal does have a joint count limit for
efficiency, should be no more than 256 joints. Most characters will
have a Root Joint that parents all other joints, this is for Unreal
setup.

Chains do not have to all be connected, Control Rig works similar
to Maya rigging. Limit chain length for things like tails, tentacles,
etc, no more than 16 joints in a single chain, target no more than 8.

Re-Use joint setups where possible. Sub-joints can still be used in
Control Rig. Clothing/attachment setups may vary. If using physics
cloth, only a root joint is needed.

Naming conventions:
C_object_joint_#_offset
L_object_joint_1_CTRL
R_object_joint_2_offset
R_object_joint_end_JNT
R_object_joint_#_bind
C_object_root_CTRL
object_JNT_GRP
object_GEO_GRP

Save with the following naming convention:
Naming Convention:
BTB_CHAR_CharacterName_joints_LastnameFirstname_Iter
ation
Example: BTB_CHAR_Aster_joints_BrowningJacob_4.mb

Rigging & Animation Cont.

14) Weight Painting
Using ngSkinTools for Maya is recommended. Joints should deform
topology smoothly and regularly with no rogue vertices moving on
other areas of the model. Work on as few joints at a time as
possible with all others locked for default Maya painting, work in
the correct Layers with ngSkinTools. Two joints should deform to a
‘heart’ shaped crease as much as possible, long joint chains may
behave differently for tails, tentacles, etc. Topology should have
clean curves when posed, no jagged lines.

Save with the following naming convention:
Naming Convention:
BTB_CHAR_CharacterName_Weight_LastnameFirstname_Iterati
on
Example: BTB_CHAR_Aster_Weight_BrowningJacob_4.mb

 Painting Weights Guide

15) Import to Unreal
Import from Maya into Unreal as an .fbx by using export or
Game/Unreal export. Check Export UVs, vertex colors.

When exporting, be sure to have everything named appropriately,
and have everything selected.

Save with the following naming convention, there should only be
one Export file:
Naming Convention:
BTB_CHAR_CharacterName_export_LastnameFirstname.fbx
Example: BTB_CHAR_Aster_export_BrowningJacob.fbx

Import into the game project into the appropriate folder as per the
naming convention guides.

https://www.youtube.com/watch?v=lA5gVcLEZWk

Rigging & Animation Cont.

16) Control Rig
Skeletal meshes can have multiple control rigs for different
uses. Control Rig can be additive to existing animation. Base
rig setup should be similar to Maya so that animators are
familiar with the same setup.

One major difference is that Unreal has Space Switching built
into the animation editor by default, so for some things there
is no need to create a rig space switch, this can be handled by
the Animator as needed. Attached items like hats, weapons,
etc, can be parented outside the main rig hierarchy, and have
a default Space and any number of additional Spaces, world,
joint, offset group, etc.

Backwards solve does not need to be setup for the base rig.

Make use of the Unreal solvers, Spine IK, 2-Bone and 3-Bone
IK for legs, CCDIK for long joint chains, FABRIK, FBIK, etc.

We will not be using an FK/IK switch setup unless it is needed
for animation purposes. A simple FK rig can be enabled for
any Skeletal mesh by adding it in Sequencer

Unreal has a lot of Control shapes by default, but more can be
added with a Control Shape Library, which can add any mesh
as a control shape.

Prefix: CR_assetName

Rigging & Animation Cont.

16) Control Rig Cont.

Unreal 5 Documentation:
Control Rig
https://docs.unrealengine.com/5.0/en-US/rigging-with-control-rig-in-unreal-engine/

Space Switching
https://docs.unrealengine.com/5.0/en-US/re-parent-control-rig-controls-in-real-time-in-un
real-engine/

Spline rig
https://docs.unrealengine.com/5.0/en-US/control-rig-spline-rigging-in-unreal-engine/

Custom Control Shapes
https://docs.unrealengine.com/5.0/en-US/control-shapes-and-control-shape-library-in-unr
eal-engine/

FK Rig:
https://docs.unrealengine.com/5.0/en-US/fk-control-rig-in-unreal-engine/

IK Rig setup
https://docs.unrealengine.com/5.1/en-US/unreal-engine-ik-rig/

Locomotion, Root Movement driven by animation
https://docs.unrealengine.com/5.1/en-US/locomotion-in-unreal-engine/

Motion Warping orientation and position of animation toward a target
https://docs.unrealengine.com/5.1/en-US/motion-warping-in-unreal-engine/

Real-time Machine Learning Deformations through Maya plugin
https://docs.unrealengine.com/5.1/en-US/how-to-use-the-machine-learning-deformer-in-u
nreal-engine/

IK animation retargeting
https://docs.unrealengine.com/5.1/en-US/runtime-ik-retargeting-in-unreal-engine/

Layered Animation, modular skeletal animation
https://docs.unrealengine.com/5.1/en-US/using-layered-animations-in-unreal-engine/

Sub animation graphs within graphs for greater complexity
https://docs.unrealengine.com/5.1/en-US/using-sub-anim-instances-in-unreal-engine/

Animation Physics Dynamics for secondary motion on solid objects
https://docs.unrealengine.com/5.1/en-US/creating-dynamic-animations-in-unreal-engine/

Ragdoll physics blending per joint for hit effects
https://docs.unrealengine.com/5.1/en-US/physics-driven-animation-in-unreal-engine/

https://docs.unrealengine.com/5.0/en-US/rigging-with-control-rig-in-unreal-engine/
https://docs.unrealengine.com/5.0/en-US/re-parent-control-rig-controls-in-real-time-in-unreal-engine/
https://docs.unrealengine.com/5.0/en-US/re-parent-control-rig-controls-in-real-time-in-unreal-engine/
https://docs.unrealengine.com/5.0/en-US/control-rig-spline-rigging-in-unreal-engine/
https://docs.unrealengine.com/5.0/en-US/control-shapes-and-control-shape-library-in-unreal-engine/
https://docs.unrealengine.com/5.0/en-US/control-shapes-and-control-shape-library-in-unreal-engine/
https://docs.unrealengine.com/5.0/en-US/fk-control-rig-in-unreal-engine/
https://docs.unrealengine.com/5.1/en-US/unreal-engine-ik-rig/
https://docs.unrealengine.com/5.1/en-US/locomotion-in-unreal-engine/
https://docs.unrealengine.com/5.1/en-US/motion-warping-in-unreal-engine/
https://docs.unrealengine.com/5.1/en-US/how-to-use-the-machine-learning-deformer-in-unreal-engine/
https://docs.unrealengine.com/5.1/en-US/how-to-use-the-machine-learning-deformer-in-unreal-engine/
https://docs.unrealengine.com/5.1/en-US/runtime-ik-retargeting-in-unreal-engine/
https://docs.unrealengine.com/5.1/en-US/using-layered-animations-in-unreal-engine/
https://docs.unrealengine.com/5.1/en-US/using-sub-anim-instances-in-unreal-engine/
https://docs.unrealengine.com/5.1/en-US/creating-dynamic-animations-in-unreal-engine/
https://docs.unrealengine.com/5.1/en-US/physics-driven-animation-in-unreal-engine/

Rigging & Animation Cont.

17) Physics Asset
Physics Assets should only be set up for characters that need a
ragdoll or hit effects in the animation blueprint. Depending on
the number of joints, this can be a complicated process with
mixed results.

Physics Asset Editor
https://docs.unrealengine.com/5.0/en-US/physics-asset-edito
r-in-unreal-engine/

Examples:
https://www.youtube.com/watch?v=UqJXKFldJSM
https://www.youtube.com/watch?v=OFHxWLRrL5M

a) Approval (by Shannon/John + Matt & Coral)

https://docs.unrealengine.com/5.0/en-US/physics-asset-editor-in-unreal-engine/
https://docs.unrealengine.com/5.0/en-US/physics-asset-editor-in-unreal-engine/
https://www.youtube.com/watch?v=UqJXKFldJSM
https://www.youtube.com/watch?v=OFHxWLRrL5M

Material Optimization

Unreal Materials Optimization guide:
https://docs.google.com/document/d/1-guvLUfwk7fcVOuHCT
EehJWf7i6AoDoU65jIKwSIG6Q/edit#

For this project, we are using a Master subsurface PBR material M_PBR, which has all the
settings needed for most mesh surfaces. This material does not cover VFX materials which
have unique setups. Most game materials should use an instance of these master
materials.

M_PBR is setup so that there are up to 4 textures needed for a fully textured object:
● Base Color with AO
● Normal with Opacity
● Packed Metal, Rough, Height, Emissive/Subsurface
● optional Specular Color

Feature List
● Triplanar Switch for mapping seamless textures with random variation
● Texture UV Warping, Warp Animation, and UV transforms
● Solid Color parameters with Lerp Alphas
● Min/Max parameters for Metal, Rough, Emissive, etc.
● Subsurface depth controlled through Opacity
● Gradient color overlay on Base Color
● AO multiplies with Base Color
● Height Map blends with Normal Map
● Specular Color through Emissive channel and camera vector
● Fresnel opacity parameters for transparent version
● Material functions re-used to setup Transparent, Landscape, and Decal materials

Material Property Overrides can be used in the Material Instances as needed for
changing Blend Mode, Shading Model, Two-Sided, etc.

Default Lit is the default mode, Subsurface should be enabled as needed for the material.

Textures should be assigned to their correct Texture group when uploaded for
performance Scaling to work properly.

Normal Map textures that have Opacity should be assigned the Default Compression
mode, Normal Map compression ignores the Alpha channel.

https://docs.google.com/document/d/1-guvLUfwk7fcVOuHCTEehJWf7i6AoDoU65jIKwSIG6Q/edit#
https://docs.google.com/document/d/1-guvLUfwk7fcVOuHCTEehJWf7i6AoDoU65jIKwSIG6Q/edit#

MoCap Information

Unreal Engine 5 Mocap Clean Up Workflow

Rokoko

We can use valve trackers on objects and use constraint
systems

Slightly Impeded further information until we are fully aware
of all the SCAD has to offer in regards to mo-cap.

https://www.youtube.com/watch?v=U8UfulKe_fQ

Animation Pipeline Guide

Link To Miro Board

Approval Processes

During approval steps, your lead will approve or reject your work.
If work is accepted, proceed to the next pipeline step. If it is
rejected, your lead and your peers will help identify how far the
animation needs to move backwards in the pipeline for revisions
or be tweaked.

Steps

1. Create Keyframes
2. Get Keyframes Approved
3. In Between
4. First Pass
5. First Pass Approved
6. Second Pass and Final
7. Final Approval
8. Upload to Unreal

https://miro.com/app/board/uXjVP5WmflA=/?share_link_id=588397402506

Animating

1. Create Keyframes
When creating keyframes, you will need to view references to get your timing
correct. Always ask your peers questions and advice if you ever have questions
about timing. Make keyframes at all key points of the animation. (ex. A walk cycle
will need a keyframe at each time a heel contacts the ground)

2. Get Keyframes Approved
Keyframes need to be approved by your lead before continuing to in-betweens.

3. In Between
In betweens need to be added once your keyframes are approved. You only need
to add enough in betweens to make the animation somewhat smooth until you
believe it is ready to be reviewed as a first pass.

4. First Pass
Your first pass should be what you believe to be the core animation. There doesn’t
need to be any polishing or super precise cleanup yet, but there should be enough
to get the basic idea of how the animation will work.

5. First Pass Approval
First passes need to be approved by your lead before continuing to Second Pass
and Final.

6. Second Pass/Final
Once your first pass is approved, you are free to move on into the cleanup and
polishing stage in order to get a second pass.

7. Final Approval
Second passes/Finals should be approved by your lead before continuing to
Exporting to Unreal.

8. Export to Unreal
If you are animating in Unreal, you won’t need to do this step since it will already
be in Unreal. If you are exporting to Unreal from Maya or Blender, you will need to
make sure animation is named using the correct naming conventions.

Sound Pipeline Guide

Link To Miro Board
Link To Research Doc

Approval Processes

During approval steps, your lead will approve or reject your work.
If work is accepted, proceed to the next pipeline step. If it is
rejected, your lead and your peers will help identify how far the
sound needs to move backwards in the pipeline for revisions or be
tweaked.

Request for Sound Effect

For each scrum team, during their sprint they will maintain a
spreadsheet for keeping track of sound assets, using the following
template:

Game Audio Template

Any team member on the sprint can add to the spreadsheet.

Acquiring Sound Effects

Acquire via Library or Foley

https://miro.com/welcomeonboard/N2NUYUl3ZFM1bGtZUndUbVBkREhwZng0U21rNERGb3oxNGdDN1p0dlE2OHYyWkZvejk4WnY1Y3JvNFh0VFM2aXwzNDU4NzY0NTQwNzM0NDAxMDcwfDI=?share_link_id=411828539268
https://docs.google.com/document/u/0/d/13uNyM8TYupgM61Fa2rwQunfSpSkL6X-H_JR2aDr0omw/edit
https://docs.google.com/spreadsheets/d/1_LRChKLwfC6pETayKqwODV7-PTBm-hE2gvLsiPb48sI/edit?usp=sharing

Compiling Sound Effects

Edit in the Reaper DAW.

When exporting, adhere to the standard settings for .wav files for
the project.

Archive the edited .wav file in the sound assets folder of the
module you are working on.

Naming Convention:
Category_Subcategory_Level_Name_Variation#

Category:
Overall Type of Sound (SFX, Music, Dialogue)

Subcategory:
Type of Category (Ambient, Cinematic, Menu, NPC, etc.)

Level:
What UE Level the sound is located in

Name:
Identifier of what the sound is

Variation#:
What variation of the sound it is

a.) Approval by whoever is in charge of the Test For
Doneness of the task. If it is approved, move on to step 4.
Otherwise, move backwards in the pipeline to make necessary
revisions.

TODO: Update with more details about file storage

Implement into Wwise

TODO: Perforce Details

- Import wav into appropriate Actor-Mixer Hierarchy
- Edit sounds as necessary
- (Optional - Develop any Game Syncs needed, Game

Parameters, States, Syncs, etc.)
- Make Event
- Generate into soundbank.

Import into Unreal

- Go to Window > WAAPI Picker
- Select All > Generate Sound Data

Call sounds in Unreal

https://www.audiokinetic.com/en/library/edge/?source=UE4&id=features_objects.html
https://www.audiokinetic.com/en/library/edge/?source=UE4&id=features_blueprint.html

TODO: Make video guide for implementation

Final Approval

Sound Designer and Implementer run the final implemented
sound by whoever is in charge of the Test For Doneness of the
task.

https://www.audiokinetic.com/en/library/edge/?source=UE4&id=features_objects.html
https://www.audiokinetic.com/en/library/edge/?source=UE4&id=features_blueprint.html

Poly Counts & Texture Limits

Due to the introduction of Nanite, poly counts differ for three
different classes of Objects: Nanite Static Meshes, Static Meshes,
and Skeletal Meshes (Characters).

Nanite Static Meshes

Any mesh which can be used with Nanite falls into this category.
Nanite does NOT support transparency or any other blend modes
besides Opaque and Masked. No polygon limit will exist for Nanite
assets. However, assets with many polygons will create large FBXs
which will take up group storage space, so only use millions or
more polygons in situations where it has a discrete benefit.

Static Meshes

If a static mesh requires transparency or certain other blend
modes or rendering features, it cannot use Nanite. In these cases,
keep poly count below 20k for non-hero assets, and 100k for hero
assets.

Skeletal Meshes (Characters and Morph Targets)

If a skeletal mesh is not a character (ie. exists to make use of
Morph Targets, Animations, or other deformations), it follows the
same poly limits as Static Meshes.

Due to Nanite, we have a larger budget for characters.

Hero Characters

For Hero characters (the player character, bosses, and other
characters who will only ever have one instance of themselves on
screen at a time,) the poly limit is 150k.

Non-Hero Characters

For non-hero characters, the poly limit is 50k.

These budgets are set purely for performance. For ease of
modeling and rigging, select a poly count which is manageable for
the sculptor and rigger. 60-80k for a hero character, and 30k for a
non hero character is a recommended target.

To enable these high poly counts, LODs should be created for
skeletal mesh characters using Unreal Engine’s auto LOD
generation.

Import/Export Rules

Export File Formats

.WAV Files

Adhere to the following settings for all .wav exports:
- 48 Khz
- 16 bit
- Mono for Spatialized Sounds (Footsteps, Attacks, etc.)
- Stereo for Non-Spatialized (Ambients, Weapon Tails, etc.)

Textures .tga

3D Assets .fbx

Sounds .wav

HDRIs .hdr

Vector Graphics .svg

Texture Files

- All textures should be .tga files.
- On import to unreal, ensure the following:

- Normal Maps have been automatically converted to
“normal map” compression settings and have sRGB
unchecked.

- Value maps or masks have sRGB unchecked. If it
isn’t used for a color input, it should not be sRGB.

.FBX Files

All fbx files should be in Unreal Scale, where one unit = 1 cm. This is
the scale that should be worked at in maya as well.

In maya, Y is the up axis, and this is true in the FBX coordinate
system as well. Unreal engine should be configured to change the
up axis to Z while importing 3d assets.

Use the following unreal import settings, unless otherwise needed.
Non-specified settings should be left at default unless needed.

Static Meshes (non-deforming):

Leave skeletal-mesh specific options at the default unless you
know what you are doing.

Name of Setting Set To

Build Nanite Checked

Generate Missing Collision Checked

Generate Lightmap UVs Unchecked

Import Translation/Rotation 0,0,0

Import Uniform Scale 1

Convert Scene Checked

Texture Files

- All textures should be .tga files.
- On import to unreal, ensure the following:

- Normal Maps have been automatically converted to
“normal map” compression settings and have sRGB
unchecked.

- Value maps or masks have sRGB unchecked. If it isn’t
used for a color input, it should not be sRGB.

Narrative Implementation

Notes

Notes will be discoverable in the environment with lore and
character information.

Audio Logs

Audio logs add further character and lore context.

Dialogue

 Characters will speak with full voice acting and rigged faces

In Engine Cutscenes

Third person cinematics are for big set pieces. They remove
control from the player to play a filmic sequence. Cutscenes will be
in-engine.

For more minor moments, events will play out with the player still
in control, with the normal first person camera.

Project-Wide Functions

The Blueprint Function Library BFL_btbFunctions contains a set of
functions which can be used in any blueprint. Some of these
functions are simple conveniences: others should be used in place
of the default node in all cases. Those ones are marked in bold.

btbOpenLevel Opens a level (by asset reference)

btbIntitalizeLevel To run after opening a level

btbSetInputMode Configures input modes between
UI and game

btbOpenPauseMenu Opens the pause menu

btbClosePauseMenu Closes the pause menu

btbOpenMainMenu Brings the player to the main
menu

btbQuitGame Exits the game

btbOpenLevelByName Opens a level (by asset reference)

btbGetGameInstance Gets the game instance (no need
to cast to btb_gameinstance)

btbGetPlayerCharacter Gets the player character (returns
BP_Aster)

btbPreOpenLevel Ran automatically before opening
a level

btbGetMasterGameSeed Gets the seed for the run

Procedural Systems

Dungeon System

The dungeon system is used for the three subterranean biomes. It
functions by creating a grid of cells, then filling that grid with
rooms from a list.

Terminology

Cell:
A bounding box which can contain a room

Room:
A single gameplay area which is contained within a cell

Room Level:
The level which contains all the assets and actors for a

room
Room Blueprint:

The blueprint which contains all the data about a room
Hall:

A procedural hallway that connects rooms
Hall Connection:

A point in a room from which a hallway can originate
Hall Segment:

Halls are divided into multiple segments, to allow for
procedural connections between rooms

Terminology Cont.

Each cell acts as a bounding box for the room. The room can’t be
bigger than the cell. However, the room should not take on the
blocky shape of the cell, but instead be a more organic form fit
within it. Similarly, while halls have to meet at hall connection
points, consider a “hall” within the cell which leads from that point
to a more natural connection.

Halls are used to connect rooms together. Each cell has a set
number of connection points, interspersed around its edge. The
default configuration is three per side. One connection is at the
middle of the room, then two to its left and right. A room can only
have one connector per side.

Halls are composed of hall segments. Hall segments are used to
automatically connect any two cardinally adjacent rooms,
regardless of the positions of their two hall connectors. To connect
two connections, three hall segments are used.

Rooms can have up to four connectors, but only one is guaranteed
to be filled. If a room has a connector with no adjacent room to
connect to, the connector is blocked off by a wall.

The Details

The dungeon system is stored in the ProceduralDungeonSystem
module, which is loaded in a plugin. It is managed with a
BP_CellDungeonGenerator, which is responsible for creating a grid
of BP_Cells, populating that grid with BP_CellRooms, loading in
the associated level instances, then connecting them with
BP_CellHalls. It contains a weighted list of rooms it can use.

The cell dungeon generator starts by creating a starting room,
then “tunneling” to an ending room. Tunneling is creating a path of
rooms for a set random length (between a min and max) and then
placing the ending room. After tunneling to the end room, offshoot
tunnels are made to any number of “mandatory” rooms, such as
loot rooms or shops. Finally, it adds rooms to unused adjacent
connectors. Tunneling can only be done with rooms with 2 or more
connections.

The generator is self-validating. If an operation fails, it retries. If it
fails enough times, it restarts the entire generation process.
Generation typically happens in a fraction of a second, with
instancing in levels taking longer.

Rooms are stored in level files, which are instanced into the level.
Each level has an associated blueprint, which is used to store info
about the room. The naming convention for rooms is
BiomeAbbreviation_RoomName_LVL and
BiomeAbbrevation_RoomName_BP. The asset type prefix is
instead a suffix that a room level is organized next to its blueprint
in the content browser.

Minor Procedural Elements

Enemy placements within a room are randomized, and pulled from
a weighted list. Loot is randomized.

Desired and Unimplemented Features

Repeatable seeding for everything
Props and hazards randomized
Randomize some set dressing for variety

Badlands Biome Systems

The badlands biome is primarily handbuilt, with only the minor
systems for loot, enemy, and prop placement changin.

Combat

Spawning Enemies

Enemies should be spawned via BP_UPDATEthisdocwithname,
which is used for spawning randomized enemies in a room. It has
a list of locations in which they can be spawned, and a min/max
number to spawn, and picks from a weighted list which can be
changed per instance.

Another blueprint, BP_WaveSpawner (unimplemented) will be
used to spawn in additional waves of enemies.

Detecting Combat

A system needs to be built to detect if the player is in combat. The
suggested method is as follows: when the player deals damage to
or takes damage from an enemy, set an “in combat” variable to
true, and start a timer. When the timer is finished, run a test to see
if any enemies are targeting the player. If they aren’t, end combat.
Reset the time when the player deals or takes damage to/from an
enemy. Note: build a unified detection system into btb_enemy

This system is needed for combat music and other effects which
happen based on if combat is happening.

Weapons

Weapons are the main damage-dealing tool of the player. The
player has two slots for weapons, which they can switch between
at any given time.

Implementation

Weapons are child blueprints of BP_Weapon. BP_Weapon can be
picked up, placed in weapon slots, and is set up to receive input
from the player via eight event dispatchers: a pressed and
released dispatcher for the weapon’s primary action, secondary
action, melee action, and reload.

By default, BP_Weapon has an implementation of line traced
weapons which should be sufficient for any semi-automatic
firearm, including audio, particle effects, animation, recoil, and
reloading. By changing default variables, the type of gun can be
altered.

For more complex behaviors, consider altering certain base
functions. By overriding DefaultWeaponFire, a gun could be
converted to firing projectiles instead of line traces, while
maintaining the rest of the weapon framework’s functions.

For more drastic changes, bind entirely new functions to event
dispatchers.

Weapon Mods (Unimplemented)

The design accounts for a standard set of modifications that can
be applied to any weapon. To implement this system, create a
blueprint type for weapon modifications, and the ability for them
to be carried by the player. Add the player’s carried mods to the
save-load system so it persists between levels.
At a workbench, the player can then attach them to a weapon,
adding them to an array on the weapon.

The effect of the modification should work on any gun that uses
the default functions. If a weapon overrides those functions,
implement its effects into the new ones.

Super Bullets (Unimplemented)

Super bullets are a limited ammo type which does greater
damage. To activate them hold down reload.

To implement this feature, first add a blueprint for super bullets,
and a tracking variable on the player. Add the tracking variable to
the save-load system so it persists between levels.

Move reloading from “pressed” to “released”, and start a timer
when the input is pressed. If the timer is over a certain number,
load super bullets instead of normal bullets, if the player is
carrying any. Remove that many bullets from the player. If the
player has fewer than a full clip, only load that many.

Configuration Variable Description

Variables such as tracking booleans aren’t listed; only those which
should be changed to configure the effect.

Fire Mode Attributes:

Cooldown:

Reload:

Buffer:

Damage Per Shot (Float) Damage dealt by one bullet. 100 = normal
health bar

Damage Falloff Start (Float) Distance through a line trace damage
falloff begins, 0-1 range where 0 is start
of trace, 1 is end.

Range (Float) Length of trace

Angle Variation (Float) Angle (in degrees) by which a line trace
can randomly deviate.

Number of bullets (float) Number of lines to trace

PhysicsForce (float) Amount of force to apply to hit physics
objects.

ImpactEmitter (Niagara System) Particle effect to play at impact location

DamageType (Enum) Type of damage dealt

CooldownTime (Float) Time between shots.

ReloadDuration (Float) How long the reload takes. Also controls
the speed of the reload animation.

BufferLength (Float) How long a fire input remains buffered
before it is cleared.

Configuration Variable Description Cont.

Recoil:

Animation:
Self describing. Ones not labeled arms apply to the weapon.

Ammo:

RecoilForce (Float) Force of recoil as applied to cursor.

RecoilPattern(Curve Vector) Curve asset. Controls recoil pattern.

RecoilReturnSpeed(Float) Speed at which we “descend” the curve
asset

RecoilGainSpeed(Float) Speed at which we “climb” the curve
asset

RecoilTime(float) Total time recoiling lasts

Bullets in mag Number of bullets currently in the
magazine

Mag Size Number of times the gun can be shot
without reloading. Note A: this is the
number of times it can be fired, not the
number of bullets in the mag. A three
round burst for example would trace
three lines, but consume one round.

Note B: Yeah the revolver has a magazine.
That’s because this is a metaphor

Weapon Animations:

Weapons have two animations, one played on the player’s arms,
another on the gun. All weapon animations should be animated to
take one second. The speed the animation is played at is then
returned to the original rate by the play rate of the montage. This
is so that abilities can affect the speed of reloads.

Gadgets

Gadgets are the primary utility of the player. They serve combat
purposes, primarily through movement, damage-dealing, or
controlling enemies. The player can hold up to two at a time.

Implementation

Gadgets are children of BP_ActiveAbility. Gadgets receive the
inputs “begin execution” and “end execution” from the player,
when their button is pressed and released.

Gadgets also have a ST_AsterStatModifiers variable, which can be
used to affect aster’s stats, although UpdateStats must be called
on BP_Aster for changes to take effect.

Variables in the UI class hold its description.

The ActiveAbility class is lightweight. Most gadget functionality
must be built bespokely for the gadget. Many gadgets will likely
have other blueprints they spawn, as part of deployables or
projectiles.

Aster (Player Character)

As the player character for our game, Aster is a very important
blueprint. Aster is handled by BP_Aster. BP_Aster is a child of
BP_BtB_Character, which is a child of the engine Character class.

Input Handling

Input handling is currently handled directly on Aster (as opposed
to using a player controller). Aster also distributes input to
weapons Aster holds.

Movement

Aster currently has the ability to walk, crouch, sprint, and a dodge
roll. In addition to refining these behaviors, Slide and Mantle need
to be added.

For a slide, check if Aster is sprinting when a crouch input is
pressed. If Aster is, reduce the capsule to crouch height, and then
have Aster perform a momentum based slide. If Aster jumps,
cancel into a jump. If Aster releases crouch, cancel into a walk or
run. Block aster from crouching or dodge rolling if Aster is
crouching.

Weapons & Gadgets

- Aster has systems to pick up, hold, and utilize 4 weapons. This
needs to be reduced to two.

- Aster has systems to pick up and hold 2 gadgets, referred to
as Active Abilities in code.

Body Mods

Currently, an implementation for Passive Abilities takes the place
of body mods. These need to be overhauled with a body mod
system. This includes the implementation of slots, so that Aster can
only have one in the torso slot at a time, one in the leg slot at a
time, etc. They also need to work with a socket or procedural mesh
based system to affect the look of Aster’s character model. For
some specific body mods, branches need to be added to other
sections of Aster’s code, to change the behavior of something like
a jump.

Stat Changes

By changing the values of the Stat Modifiers variable on the
BP_PassiveAbility or BP_ActiveAbility, different stat changes can
be applied automatically. Stat changes should always be handled
through the Update Stats function, instead of being applied
directly, in case multiple sources want to change the same effect.

The Update Stats function gathers a list of all stat modifiers to
apply, then the Apply Stats function applies the changes by
starting from base values and reapplying all modifiers.
ST_AsterStatModifier stores data of stat modifications. To add
another source to gather stats from, add it to the Modifiers array
in Update Stats.

To add another stat which can be affected, add it to
ST_AsterStatModifier, and to the Apply Stats function.

Interaction

On the interaction button being pressed, Aster sends out a line
trace, which calls the “Interact” function on BTB_Interactable on
whatever it hits.

Aster also traces every frame to the same distance, and displays
an interaction prompt if the hit target has a
BPC_InteractionPromptComponent on it.

Controller support for interactions needs to be added.

Save/Load

See the save/load document for more details. Aster contains
functions to write their state into the game instance, and load
from that game instance.

The ability to save/load from file is not yet implemented.

UI

On Begin Play, BP_Aster creates an instance of WBP_HUD and
adds it to the viewport.

When the open inventory button is pressed, BP_Aster creates an
instance of WBP_Inventory and adds it to the viewport. It is
destroyed when it is closed.

Aster calls the library function BtB_OpenPauseMenu when the
pause button is pressed.

Health

Healing items can be collected in the dungeon. They are scarce,
and using them takes time, like a flask from dark souls. They may
be available for purchase in the shop.

Implementation

BP_HealingItem serves as the in-world version of healing items to
pick up. Upon being picked up, they are destroyed, and a tracking
variable on BP_Aster will keep track of how many Aster is holding.
This much is already implemented.

In addition, a trivial implementation of the healing effect has been
completed. It needs to be expanded to

A. Block usage of weapons/gadgets while healing
B. Take time to start the heal
C. Apply the healing effect over a short period of time

Shops & Currency

Shops are a currently unimplemented system allowing the player
to spend currency to buy items.

Currency

Currency should be kept track of on the player with an integer
variable called “ore”. It should exist in the world as BP_Ore. The
blueprint contains the model, and the collision volume to
automatically pick it up. A function called BtB_DropCurrency can
be used to spawn a random amount at a location.

Ore is dropped by enemies on death, and from veins found in
walls. These veins will be used with a blueprint called
“BP_OreVein”, which on interaction drops a random amount of
ore.

The currency variable needs to be able to be passed into and out
of the game instance via ST_AsterSaveData.

Shops

The shop blueprint needs to be able to generate a shop in any
room it is set up in. It should contain the shopkeeper, and the art
asset which is used to display items on sale. The shop blueprint
should be able to be dropped into a room level, the location of its
models moved, then its loot tables configured. What it specifically
sells should be random per instance. The randomness should be
based off of the global seed.

Shops sell health items, gadgets, weapon upgrades, and coal,
although not at once. For gadgets and weapon upgrades, the shop
needs to utilize weighted loot table assets which can be changed
out on a per instance basis. A structure data asset which contains
the blueprint to sell, the weight (likelyhood to choose) and the
price should be created.

When a shop offers gadgets or weapon upgrades, it should always
offer multiple options, in order to create meaningful choices.

Input

TBD

TBD

TBD

Saving & Loading

There are two major times the game needs to save and load data:
when moving between levels, and when closing and opening the
game. There are furthermore two types of data which needs to be
saved; single-run data, and metaprogression data.

Saving Between Levels

Single-Run Data:
When moving between levels, all blueprints are destroyed,
except for the Game Instance. We use the game instance
class BP_BtB_GameInstance to save data between levels.
There is a struct asset called ST_AsterSaveData, which aster
knows how to read into and write out of to restore important
data about Aster’s state. When moving between levels, a
variable of this structure is passed into the game instance,
then from the game instance to the new instance of BP_Aster.
Whenever new features are added to Aster, they should be
added to ST_AsterSaveData, and BP_Aster’s functions to
read and write save data.

ST_AsterSaveData is only for single-run data, which can
freely be destroyed at the end of a run. Data which
progresses between runs, meta progression data, does not
belong in this structure.

Meta-Progression Data:
Meta-progression data uses the structure ST_SaveGameData
(unimplemented), which is also written into and out of the
game instance, as well as written to disk.

Closing/Opening Game

(Unimplemented):
A SaveGame object called BP_BtB_SaveGame will be created to
include all data saved to disk.
https://docs.unrealengine.com/4.26/en-US/InteractiveExperience
s/SaveGame/

Single-Run Data:
To save a significant amount of work, the game cannot save
to disk during the middle of a level.

Later on, the ability to save to disk between levels will be
added, but only when a good enough system for avoiding
cheating death via alt+f4 can be devised. This will be
achieved by writing the same ST_AsterSaveData data into
the save game.

Meta-progression Data:
The structure ST_MetaSaveData will be created to store all
meta-progression data, including statistics (wins/losses,
streaks), body modifications which persist, and item unlocks if
we reach there. The structure is written into
BP_BtB_SaveData when a run ends, and read when the game
is opened.

https://docs.unrealengine.com/4.26/en-US/InteractiveExperiences/SaveGame/
https://docs.unrealengine.com/4.26/en-US/InteractiveExperiences/SaveGame/

Enemies

Base Classes For Enemies

All enemies must inherit from BP_BtB_Enemy (which inherits from
BP_BtB_Character which inherits from Character). They inherit
BPI_Damagable from BP_BtB_Character, which allows them to
take damage.

Events/functions to override

TakeDamage may be overridden (possibly calling super, or not) if
it requires custom behavior. Similarly, Die might be overridden
(probably not calling super).

Hitboxes

We are stuck with the capsule collision from Character, which is
also used for determining character movement component’s
movement, but for characters for whom this capsule does not
make sense, it should be shrunken, and additional collisions should
be added. To be registered as damageable to hitboxes, the
components must be tagged as “Damageable”)

Behavior Trees

All enemy AI should be programmed using behavior trees.

Model

A controller/puppet model, where the enemy’s blueprint has
certain actions (attacks, special movement options, etc) but the ai
controller (or the controller’s behavior tree) chooses when and why
to use certain actions, is recommended but not required.

Attacks

Attacks should either utilize line traces using the “weapon” trace
channel, spawn BP_Hitboxes, or spawn projectiles which have
BP_Hitboxes on them. If none of these options are viable, a
bespoke solution which calls TakeDamage on the target can be
made, but no guarantees will be made that these solutions will be
continually supported as changes are made to important
blueprints.

AI Controllers

AI should use a controller which inherits from
BP_BtB_AIController (which inherits from AIController). This
includes a handy reference variable to the player character, called
“Player Reference” which should be used instead of “get player
character”

BP_hitbox

Spawned with function "spawn and attach hit box" or manually.
Attacker is the actor who attacks. The attacker can receive certain
notifications via the "bpi_attackcallbacks" interface (not yet
implemented). Deals damage of type on overlap. Despawns after
specified lifetime. Can be spawned attached to a socket to bind
them to the animation.

Behaviors

Enemy behavior should be nuanced enough to be complex and
believable. This comes from creating multiple attack patterns, and
movement more complex than a single rushdown. Consider using
variables like “aggression” or “fear” to make a “mood” for the AI,
which are used to make decisions, in addition to other factors like
distance from the player.

Enemies should also have a “searching” behavior for when they
have seen the player recently, but don’t see them right now, to
avoid them jumping right from combat to their idle behavior.

The idle (player not detected) behavior should appear realistic for
the enemy type, and might include resting, patrolling, scavenging
off corpses, or more.

Bosses

Bosses should have larger health pools than enemies. Bosses
might have weak points, but should not follow the “Legend of
Zelda” model, where an enemy is invincible until it reveals its weak
point during a specific phase. Bosses should have more and more
varied attacks, which deal more damage, but are well-telegraphed
and avoidable if you know what you’re doing.

Bosses

TBD

TBD

TBD

Graphics Options

Beneath the Badlands will have 3 presets for graphics settings.

RTX/High Quality Mode

RTX mode utilizes hardware ray tracing in conjunction with
some lumen features to provide the highest quality look. This
mode is the primary target for art direction

Ray Traced AO
Ray Traced Global Illumination
Ray traced reflections w/ screen traces
Ray traced translucency

RTX Settings To Test:
Test brute force vs final gather
Test all samples

Lumen Mode

Lumen mode features more restrained settings, but still uses
lumen features to achieve global illumination and remain
close to the original look. It exists to help support cards
without hardware ray tracing. Depending on performance
testing it may still use hardware acceleration for lumen.

Lumen AO
Lumen Global Illumination
Lumen Reflections w/ surface cache
Lumen Translucency

Performance Mode

Performance mode disables features like global
illumination, ray traced reflections, ray traced
shadows, and ray traced AO. It provides high
framerates, at the cost of deviating the furthest
from the art direction.

Screen Space Reflections
Screen Space AO
Raster Translucency
SSGI

Individual Settings

To be configured regardless of preset.

Resolution:
Screen Resolution. Max depends on your monitor.

Fullscreen mode:
Fullscreen
Windowed
Borderless

Depth of field:
(if utilized by art team, option to disable)

Anti Aliasing:
Investigate options. Offer as many as available easily in the engine.

Texture Quality:
Caps the texture quality to reduce VRAM usage.

Vsync:
Defaults to off, but can be turned on.

FOV:
Default of 90, but can be changed. Playtest to determine min and max

